Framework for Placement of BMPs in Urban Watersheds

Fu-hsiung (Dennis) Lai, Ph.D., P.E.
USEPA ORD, Urban Watershed Management Branch
Edison, New Jersey

Leslie Shoemaker, Ph.D.

Tetra Tech, Inc

Fairfax, Virginia

September 23, 2004

ISMDSF

Integrated Stormwater
Management Decision
Support Framework

Outline

- Project objective
- Cost-optimization concept
- Framework Design
- Two-phase effort

OBJECTIVE of ISMDSF

Develop methodologies and decisionsupport tools

for cost-effective placement of BMPs at strategic locations in urban watersheds

based on integrated data collection and hydrologic, hydraulic, and water quality modeling

Placement Strategy

- Trade-offs
 - In a given subwatershed
 - Upstream distributed BMP/LID options
 - Downstream more regionalized wetretention basin/wetland systems
 - Between sub-watersheds

environmental

decisions

Intended Users

- Knowledgeable model users who are familiar with the technical aspects of watershed modeling – including:
 - Local/county government engineers/planners
 - Federal/state regulatory reviewers
 - Consulting engineers
 - Public concerned citizens/stakeholders
 - Academicians
- Not intended for modeling neophytes.

decisions

Desired General Features of ISMDSF

- Functional capability within the framework
- Ability to link externally to existing watershed and receiving water models
- Current trends in system development
- Ability to build on the existing framework while allowing for parallel development of supporting models

Design Requirements of ISMDSF

- Oriented for knowledgeable model users
- Include GIS for BMP strategic placement and selection
- Applicable to mixed land use urban watersheds
- Include hydrologic/hydraulic/water quality process modeling
- Able to compare cost-effectiveness of alternatives

BMP Placement at Various Spatial Levels

Comparisons of Modeling Frameworks

•BASINS

- Large-mid size watershed
- Primarily Rural
- Mixed land uses
- Limited BMPs
- River/simple lake
 - Steady state river
 - 1-D routing

• TMDL Toolbox

- Large-mid size watersheds
- Primarily Rural
- Mixed land uses
- Limited BMPs
- River/lake/estuary
 - Hydrodynamic
 - Water quality
- Extensions
 - Sediment
 - Mercury

•ISMDSF

- Mid-small watersheds
- Urban
 - Sewer Routing (SWMM)
- Mixed land uses
- BMP simulation
 - Placement
 - Optimization
- Receiving water
 - 1-D stream routing within the watershed
 - External linkage to river/lake/estuary models

Comparisons of Modeling Frameworks

•BASINS

- Large-mid size watershed
- Primarily Rural
- Mixed land uses
- Limited BMPs
- River/simple lake
 - Steady state river
 - 1-D routing

• TMDL Toolbox

- Large-mid size watersheds
- Primarily Rural
- Mixed land uses
- Limited BMPs
- River/lake/estuary
 - Hydrodynamic
 - Water quality
- Extensions
 - Sediment
 - Mercury

•ISMDSF

- Mid-small watersheds
- Urban
 - Sewer Routing (SWMM)
- Mixed land uses
- BMP simulation
 - Placement
 - Optimization
- Receiving water
 - 1-D stream routing within the watershed
 - External linkage to river/lake/esutary models

ISMDSF

Feasible Option Matrix

Potential Location	ration
1 (0-1)	Decision ce area
2 (0-1)	Optimization Parea
•••	Engine

★ Target Load Reduction

BMP Locations

Site-Level BMP Large Watershed

Placement &

Design

★ Load (reduction) Allocation

★ Waste Load (reduction) Allocation

Land

CSO

Feasible Option Matrix

Database

- Tables
- Queries

ArcGIS Interface

- BMP Locations
- Landuse Types

Watershed Simulation

- Land Processes
- Flow/Pollutant Routing

ISMDSF

Framework

Manager

BMP Simulation

- BMP Configuration
 - BMP Processes

Optimization

- BMP Scenarios
- Decision Criteria
 - Cost Estimation

Post-Processor

- Results Display
- Results Analysis

environmental

decisions

Framework Manager

- The command center of ISMDSF
- Establishes the modeling network from GIS database
- Calls ISMDSF components (watershed and BMP modules, post-processor, optimization engine) as needed
- Provides feedback to all components
- Uses Visual Basic programming language

Watershed Model Processes

Land Surface and Subsurface

- Surface Runoff Simulation
 - Rainfall Runoff/Infiltration
 - Erosion
- Subsurface Hydrology
 - Baseflow/Interflow
 - Soil moisture conditions
- Water Quality
 - Surface pollutant accumulation & wash-off
 - Subsurface pollutant transformation
 - Transport from surface & subsurface

Routing

To Pipe, Stream,

Routing

From Land

Watershed Model Processes

Pipe/Channel Routing and Transport

- Urban Stormwater Routing
 - Sewer network definition
 - Conduit transport/overflow/bypass
 - Intermediate storage
- Natural Channel Routing
 - Reach routing network
 - Land-to-Land (stream buffer)
- Instream Water Quality
 - Pollutant delivery to conduit/channel
 - Instream pollutant transformation

Timeseries

Flow & WQ

Stand-alone Watershed Models – mostly from SWMM

- Land watershed/landscape runoff simulation
- BMP process simulation of a BMP
- Conduit flow and pollutant routing through a conduit network
- Reach flow and pollutant routing through an open channel network

BMP Simulation

- Input time series (from land simulation)
- BMP process simulation (occurs at nodes)
- Based on the current Prince George's County BMP Model
 - Structural BMP
 - Class A storage/detention
 - Class B open channel
 - Non-structural BMP
 - Represented at the land-simulation stage

ArcGIS Interface

- Serves as the system interface (What the user sees)
- Access GIS functions through a series of menus, buttons, and dialog boxes:
 - Parcel delineation
 - Network generation
 - Read/edit spatial and tabular data sets
- Dynamic interaction with other components
- Visual Basic programming language with ArcObjects
- Required software: ArcView 8 and Spatial Analyst

Optimization

- Problem formulation
 - Objectives & constraints
 - Evaluation factors & assessment points
 - Potential BMP types and locations
- Solution techniques
 - Scatter search
 - Genetic algorithm

Database

- Microsoft Access database
- Seamlessly integrated with GIS Interface
- Data management platform for spatially associated features
- Interaction/data exchange with other components
- Required software: MS Access or Microsoft Access Driver

foundation

for sound

decisions

environmental

Post-Processor

- Results visualization and tabulation
- Scenario comparison and analysis
- Summary results and statistics
- Seamless integration with ISMDSF components
- Accessible through the ArcGIS interface
- VBA macro programming language
- Required software: MS Excel

Phase 1

Interface

Cost

Simulation

- GIS linkage for placement of BMPs
- GIS based network development capabilities
- Basic cost categories as part of the optimization framework
- User can enter cost basis data for BMPs
- Simulation of land, BMPs, and flow network
- Support for a suite of BMPs including detention, retention, filtration, and buffers
- Ability to manually set up and evaluate scenarios with various BMP placement and selection options
- Case study application demonstrating system utility

Phase 2

Interface

- Enhanced GIS linkage
- Enhanced
 functions to setup
 management
 options and
 provide automatic
 iterations
- Visualization of BMP placement options
- Broadened output processing and GIS displays

Cost

- Expanded database
- Cost functions for additional innovative and nonstructural BMPs

Simulation

- Development and testing of the optimization component
- Expanded suite of BMPs
- System evaluation with new BMP components
- Application and evaluation of ISMDSF in multiple geographic settings

Questions?

